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ABSTRACT: The rhodium-catalyzed reactions of 3-diazo-
indolin-2-imines with furans and dihydrofuran furnished 9H-
pyrido[2,3-b]indoles and tetrahydrofuro[3’,2":4,5 ]pyrrolo[2,3-
blindoles, respectively. A cascade reaction mechanism
involving an a-imino rhodium carbene intermediate is
proposed. The starting materials are readily available, and
the procedure is facile and efficient.
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Indole and its derivatives are important scaffolds in naturally
occurring compounds,’ pharmaceuticals,” and optoelec-
tronics materials.” Their unique functions and structural
diversities provide inspiration in the discovery of modern
synthetic methods, including the construction of indole
skeletons and the functionalization of indole rings.*

Recently, a-imino rhodium carbene is becoming an
increasingly valuable intermediate in organic synthesis because
of the easy formation from 1-sulfonyl-1,2,3-trazole and various
effective transformations to a broad range of organic
compouncls.5 Fokin,’ Gevorgyan,7 Murakami,® Davies,” Sar-
pong,'® Shi,'" and other groups'” have made significant
contributions in this chemistry. Inspired by the vivid reactivity
of a-imino rhodium carbenes and attracted by the importance
of indole ring systems, we recently demonstrated a class of
indole-embedded a-imino rhodium carbenes in situ generated
from 3-diazoindolin-2-imines in the presence of a rhodium
catalyst."”” Upon these specific rhodium carbenes, a series of
reactions had been realized, such as arylation, cyclopropanation,
N—H insertion, and transannulation (Scheme 1)."* These
transformations furnished a variety of indole derivatives. In
continuation of our study on this chemistry, we herein report a
rhodium-catalyzed synthesis of 9H-pyrido[2,3-b]indoles and
tetrahydrofuro[3’,2":4,5]pyrrolo[2,3-b]indoles from 3-diazoin-
dolin-2-imines via an indole-embedded a-imino rhodium
carbene intermediate.

Our initial trial was conducted between 3-diazo-indolin-2-
imine (1a) and 2,5-dimethylfuran (2a, 2 equiv) in the presence
of Rh,(Oct), (1 mol %) in dichloroethane (DCE) at 80 °C for
3 h. After workup, 9H-pyrido[2,3-b]indole (3a) and dihydro-
furo[3',2":4,5]pyrrolo[2,3-bindole (4) were isolated in 36%
and 9% yields, respectively (Scheme 2). The structure of 3a was
established by the single crystal analysis of its analog 3d.'°
Further investigation demonstrated that 4 was unstable and
could be converted into 3a with or without a rhodium catalyst.
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Scheme 1. Preparation of Indole Derivations via a-Imino
Rhodium Carbenes
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In consideration of the importance of 9H-pyrido[2,3-
blindoles, also called a-carboline, in pharmetceuticals14 and
optoelectronics materials,"”> we optimized the reaction con-
ditions for the preparation of 3a (Table S1; see Supporting
Information). The highest yield (64%) and the best selectivity
were approached when the reaction was carried out in DCE at
80 °C for 8 h (Table S1, entry 16).

Subsequently, we evaluated the effectiveness of the sulfonyl
group on 3-diazoindolin-2-imines 1 (Scheme 3). Reactions
were conducted under standard reaction conditions except for
the reaction time which was determined by thin layer
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Scheme 2. Formation and Conversion of 3a and 4
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Scheme 3. Scope of Sulfonyl of 3-Diazo-indolin-2-imines
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chromatography. A slightly higher yield was observed for N-
benzenesulfonyl 3-diazoindolin-2-imine 1b, while p-fluoro-
benzenesulfonyl (1c), p-chlorobenzenesulfonyl (1d), 2-naph-
thalenesulfonyl (le), and methanesulfonyl substituted 3-
diazoindolin-2-imines (1f) afforded 3a in decreased yields.

With the optimized reaction conditions in hand, we tested
the substrate scope of this transformation. First, we investigated
the scope of 3-diazoindolin-2-imines, and the results are
summarized in Figure 1. The substituent on the 1-position of 3-
diazoindolin-2-imines could be ethyl (1g), isopropyl (1h), allyl
(1i), phenyl (1j), benzyl (1k), and H (11). Thus, the
corresponding products 3b—g were obtained in yields varying
from 40% to 55%. The substituent on the 5-position of 3-diazo-
indolin-2-imine could be either an electron-donating group,
such as OMe (1m) and Me (1n), or an electron-withdrawing
group, such as F (10), Cl (1p), and Br (1q). In these cases, the
reaction furnished the corresponding products 3h—n in 68%—
86% yields.

The scope of furans was also studied. Furan (2b) furnished
30—s in 33%—48% yields, while 2,5-diphenylfuran (2c)
provided 3t and 3u in 47% and 49% yields, respectively
(Figure 2). For the unsymmetrical furans, such as 2-
methylfuran (2d), 2-ethylfuran (2e), 2-methyl-S-benzylfuran
(2g), and 3-methylfuran (2h), the desired products 3va (38%),
3wa (40%), 3ya (27%), and 3z (8%) were selectively yielded,
while their isomers 3vb, 3wb, and 3yb were determined to be
trace by 'H NMR (Scheme 4). In the case where 2-methyl-S-
phenylfuran (2f) was used as a substrate, the desired products
3xa and 3xb were isolated in 18% yield for each.

Based on these results, we proposed a possible mechanism
for the formation of 3 and 4 (Scheme S). In the presence of a
rhodium(II) catalyst, 1a is converted into rhodium carbene A.
Then, 2 nucleophilically attacks the electron-deficient rhodium
carbene through two possible pathways. In path A, the attack
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Figure 1. Scope of 3-Diazoindolin-2-imines.” * Reaction conditions: 1
(0.2 mmol), 2a (2 mmol), Rh,(Oct), (0.002 mmol), DCE (2 mL), N,,
80 °C, 8 h. Isolated yield. ® 18 h. €10 h. 424 h.
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Figure 2. Scope of furans.”  Reaction conditions: 1 (0.2 mmol), 2 (2
mmol), Rh,(Oct), (0.002 mmol), DCE (2 mL), N,, 80 °C, 8 h;
Isolated yield. * 30 h.

occurs at the 2-position of furan to form intermediate B, which
undergoes a sequential ring-opening, 67-electron ring closure
(6m-ERC) and E, elimination to afford 3. In path B, the attack
occurs at the 3-position of furan to generate intermediate E,
which undergoes an intramoleclular nucleophilic addition to
afford 4. 4 is unstable and can rearrange to 3 through a three-
membered ring intermediate G. For the monosubstituted
furans 2d, 2e, and 2h, Path A seems possible. However, for 2,5-
disubstituted furans, Path B should be more likely due to the
steric effect.

The reactions between 3 and dihydrofuran (5) were also
studied. In the presence of a rhodium catalyst, 3a reacted with §
in DCE at 80 °C for 4 h to provide tetrahydrofuro[3’,2":4,5]-
pyrrolo[2,3-b]indole 6a (Figure 3) in 43% yield. The optimized
reaction conditions were established when the reaction of la
with § (2 equiv) was performed in the presence of Rh,(Oct),
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Scheme 4. Reaction of la with Asymmetrical Furans
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Scheme S. Possible Mechanism for the Formation of 3 and 4
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(1 mol %) in chloroform (2 mL) at 80 °C for 3 h (Table S2,
entry 2; see Supporting Information).

Under the optimized reaction conditions, we tested the
substrate diversity (Figure 3). Altering the substituent on the 1-
position of 3-diazoindolin-2-imines from methyl (1a) to ethyl
(1g), allyl (1i), benzyl (1k), and phenyl (1j) led to the
formation of the corresponding products 6b—e in 54%—62%
yields. The structure of 6¢ was determined by its single crystal
analysis.'® The highest yield (70%) was observed for 6f in the
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Figure 3. Scope of 3-diazoindolin-2-imines for preparation of 6.
Reaction conditions: 1 (0.2 mmol), 5 (0.4 mmol), Rh,(Oct), (0.002
mmol), CHCl; (2 mL), N,, 80 °C, 3 h. Isolated yield.

case where 1-unsubstituted 3-diazoindolin-2-imine 11 was used
as the substrate. The S-substituted 3-diazoindolin-2-imines
furnished the corresponding products 6g—1 in 44%—65% yields.
The sulfonyl group on 3-diazoindolin-2-imines 1 could be
methanesulfonyl (1f), benzenesulfonyl (1b), p-chlorobenzene-
sulfonyl (1d), and naphthalenesulfonyl (1e). In these cases, the
desired products 6m—p were obtained in 44%—59% yields.

A possible mechanism for the formation of 6a is illustrated in
Scheme 6. Compound 6a might be formed through two

Scheme 6. Possible Mechanism for Formation of 6a
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possible paths. In path A, nucleophilic addition of dihydrofuran
to the in situ generated rhodium carbene A forms intermediate
I, which undergoes an intramolecular nucleophilic addition to
afford 6a. Alternatively, the cyclopropanation of rhodium
carbine occurs to form intermediate J, which undergoes a
rearrangement to give 6a (path B).

In summary, we have developed a rhodium-catalyzed
synthesis of 9H-pyrido[2,3-b]indoles and tetrahydrofuro-
[3/,2":4,5]pyrrolo[2,3-b]indoles by the reactions of 3-diazo-
indolin-2-imines with furans and dihydrofuran, respectively.
These transformations proceeded through an indole-embedded
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a-imino rhodium carbene intermediate. The cascade mecha-
nism for the formation of 9H-pyrido[2,3-b]indoles includes
nucleophilic addition of furan to rhodium carbene, 67-electron
ring closure, and elimination—aromatization. Studies on the
synthetic applications of this methodology and further
exploration of the chemistry of 3-diazoindolin-2-imines are
currently underway in our laboratory.
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