<u>LETTERS</u>

Rh-Catalyzed Reactions of 3-Diazoindolin-2-imines: Synthesis of Pyridoindoles and Tetrahydrofuropyrroloindoles

Chen Wang, Haojie Zhang, Bo Lang, Anni Ren, Ping Lu,* and Yanguang Wang*

Department of Chemistry, Zhejiang University, Hangzhou 310027, P. R. China

(5) Supporting Information

ABSTRACT: The rhodium-catalyzed reactions of 3-diazoindolin-2-imines with furans and dihydrofuran furnished 9*H*pyrido[2,3-*b*]indoles and tetrahydrofuro[3',2':4,5]pyrrolo[2,3*b*]indoles, respectively. A cascade reaction mechanism involving an α -imino rhodium carbene intermediate is proposed. The starting materials are readily available, and the procedure is facile and efficient.

I ndole and its derivatives are important scaffolds in naturally occurring compounds,¹ pharmaceuticals,² and optoelectronics materials.³ Their unique functions and structural diversities provide inspiration in the discovery of modern synthetic methods, including the construction of indole skeletons and the functionalization of indole rings.⁴

Recently, α -imino rhodium carbene is becoming an increasingly valuable intermediate in organic synthesis because of the easy formation from 1-sulfonyl-1,2,3-trazole and various effective transformations to a broad range of organic compounds.⁵ Fokin,⁶ Gevorgyan,⁷ Murakami,⁸ Davies,⁹ Sarpong,¹⁰ Shi,¹¹ and other groups¹² have made significant contributions in this chemistry. Inspired by the vivid reactivity of α -imino rhodium carbenes and attracted by the importance of indole ring systems, we recently demonstrated a class of indole-embedded α -imino rhodium carbenes in situ generated from 3-diazoindolin-2-imines in the presence of a rhodium catalyst.¹³ Upon these specific rhodium carbenes, a series of reactions had been realized, such as arylation, cyclopropanation, N-H insertion, and transannulation (Scheme 1).¹³ These transformations furnished a variety of indole derivatives. In continuation of our study on this chemistry, we herein report a rhodium-catalyzed synthesis of 9H-pyrido [2,3-b] indoles and tetrahydrofuro [3',2':4,5]pyrrolo [2,3-b]indoles from 3-diazoindolin-2-imines via an indole-embedded α -imino rhodium carbene intermediate.

Our initial trial was conducted between 3-diazo-indolin-2imine (1a) and 2,5-dimethylfuran (2a, 2 equiv) in the presence of $Rh_2(Oct)_4$ (1 mol %) in dichloroethane (DCE) at 80 °C for 3 h. After workup, 9*H*-pyrido[2,3-*b*]indole (3a) and dihydrofuro[3',2':4,5]pyrrolo[2,3-*b*]indole (4) were isolated in 36% and 9% yields, respectively (Scheme 2). The structure of 3a was established by the single crystal analysis of its analog 3d.¹⁶ Further investigation demonstrated that 4 was unstable and could be converted into 3a with or without a rhodium catalyst. Scheme 1. Preparation of Indole Derivations via α -Imino Rhodium Carbenes

In consideration of the importance of 9*H*-pyrido[2,3*b*]indoles, also called α -carboline, in pharmaceuticals¹⁴ and optoelectronics materials,¹⁵ we optimized the reaction conditions for the preparation of **3a** (Table S1; see Supporting Information). The highest yield (64%) and the best selectivity were approached when the reaction was carried out in DCE at 80 °C for 8 h (Table S1, entry 16).

Subsequently, we evaluated the effectiveness of the sulfonyl group on 3-diazoindolin-2-imines 1 (Scheme 3). Reactions were conducted under standard reaction conditions except for the reaction time which was determined by thin layer

Received: July 8, 2015 Published: September 8, 2015

Scheme 3. Scope of Sulfonyl of 3-Diazo-indolin-2-imines

chromatography. A slightly higher yield was observed for *N*-benzenesulfonyl 3-diazoindolin-2-imine **1b**, while *p*-fluorobenzenesulfonyl (**1c**), *p*-chlorobenzenesulfonyl (**1d**), 2-naphthalenesulfonyl (**1e**), and methanesulfonyl substituted 3diazoindolin-2-imines (**1f**) afforded **3a** in decreased yields.

With the optimized reaction conditions in hand, we tested the substrate scope of this transformation. First, we investigated the scope of 3-diazoindolin-2-imines, and the results are summarized in Figure 1. The substituent on the 1-position of 3diazoindolin-2-imines could be ethyl (1g), isopropyl (1h), allyl (1i), phenyl (1j), benzyl (1k), and H (1l). Thus, the corresponding products 3b-g were obtained in yields varying from 40% to 55%. The substituent on the 5-position of 3-diazoindolin-2-imine could be either an electron-donating group, such as OMe (1m) and Me (1n), or an electron-withdrawing group, such as F (1o), Cl (1p), and Br (1q). In these cases, the reaction furnished the corresponding products 3h-n in 68%– 86% yields.

The scope of furans was also studied. Furan (2b) furnished 30-s in 33%-48% yields, while 2,5-diphenylfuran (2c) provided 3t and 3u in 47% and 49% yields, respectively (Figure 2). For the unsymmetrical furans, such as 2methylfuran (2d), 2-ethylfuran (2e), 2-methyl-5-benzylfuran (2g), and 3-methylfuran (2h), the desired products 3va (38%), 3wa (40%), 3ya (27%), and 3z (8%) were selectively yielded, while their isomers 3vb, 3wb, and 3yb were determined to be trace by ¹H NMR (Scheme 4). In the case where 2-methyl-5phenylfuran (2f) was used as a substrate, the desired products 3xa and 3xb were isolated in 18% yield for each.

Based on these results, we proposed a possible mechanism for the formation of 3 and 4 (Scheme 5). In the presence of a rhodium(II) catalyst, 1a is converted into rhodium carbene A. Then, 2 nucleophilically attacks the electron-deficient rhodium carbene through two possible pathways. In path A, the attack

Figure 1. Scope of 3-Diazoindolin-2-imines.^{*a* ^{*a*} Reaction conditions: 1 (0.2 mmol), 2a (2 mmol), $Rh_2(Oct)_4$ (0.002 mmol), DCE (2 mL), N_2 , 80 °C, 8 h. Isolated yield. ^{*b*} 18 h. ^{*c*} 10 h. ^{*d*} 24 h.}

Figure 2. Scope of furans.^{*a* ^{*a*} Reaction conditions: 1 (0.2 mmol), 2 (2 mmol), $Rh_2(Oct)_4$ (0.002 mmol), DCE (2 mL), N_2 , 80 °C, 8 h; Isolated yield. ^{*b*} 30 h.}

occurs at the 2-position of furan to form intermediate **B**, which undergoes a sequential ring-opening, 6π -electron ring closure $(6\pi$ -ERC) and E₂ elimination to afford **3**. In path B, the attack occurs at the 3-position of furan to generate intermediate **E**, which undergoes an intramoleclular nucleophilic addition to afford **4**. **4** is unstable and can rearrange to **3** through a threemembered ring intermediate **G**. For the monosubstituted furans **2d**, **2e**, and **2h**, Path A seems possible. However, for 2,5disubstituted furans, Path B should be more likely due to the steric effect.

The reactions between 3 and dihydrofuran (5) were also studied. In the presence of a rhodium catalyst, 3a reacted with 5 in DCE at 80 °C for 4 h to provide tetrahydrofuro[3',2':4,5]-pyrrolo[2,3-b]indole 6a (Figure 3) in 43% yield. The optimized reaction conditions were established when the reaction of 1a with 5 (2 equiv) was performed in the presence of Rh₂(Oct)₄

Scheme 5. Possible Mechanism for the Formation of 3 and 4

(1 mol %) in chloroform (2 mL) at 80 °C for 3 h (Table S2, entry 2; see Supporting Information).

Under the optimized reaction conditions, we tested the substrate diversity (Figure 3). Altering the substituent on the 1-position of 3-diazoindolin-2-imines from methyl (1a) to ethyl (1g), allyl (1i), benzyl (1k), and phenyl (1j) led to the formation of the corresponding products 6b-e in 54%–62% yields. The structure of 6c was determined by its single crystal analysis.¹⁶ The highest yield (70%) was observed for 6f in the

Figure 3. Scope of 3-diazoindolin-2-imines for preparation of 6. Reaction conditions: 1 (0.2 mmol), 5 (0.4 mmol), $Rh_2(Oct)_4$ (0.002 mmol), $CHCl_3$ (2 mL), N_2 , 80 °C, 3 h. Isolated yield.

case where 1-unsubstituted 3-diazoindolin-2-imine 1l was used as the substrate. The 5-substituted 3-diazoindolin-2-imines furnished the corresponding products 6g-1 in 44%-65% yields. The sulfonyl group on 3-diazoindolin-2-imines 1 could be methanesulfonyl (1f), benzenesulfonyl (1b), *p*-chlorobenzenesulfonyl (1d), and naphthalenesulfonyl (1e). In these cases, the desired products 6m-p were obtained in 44%-59% yields.

A possible mechanism for the formation of **6a** is illustrated in Scheme 6. Compound **6a** might be formed through two

possible paths. In path A, nucleophilic addition of dihydrofuran to the in situ generated rhodium carbene A forms intermediate I, which undergoes an intramolecular nucleophilic addition to afford **6a**. Alternatively, the cyclopropanation of rhodium carbine occurs to form intermediate J, which undergoes a rearrangement to give **6a** (path B).

In summary, we have developed a rhodium-catalyzed synthesis of 9H-pyrido[2,3-b]indoles and tetrahydrofuro-[3',2':4,5]pyrrolo[2,3-b]indoles by the reactions of 3-diazo-indolin-2-imines with furans and dihydrofuran, respectively. These transformations proceeded through an indole-embedded

Organic Letters

 α -imino rhodium carbene intermediate. The cascade mechanism for the formation of 9*H*-pyrido[2,3-*b*]indoles includes nucleophilic addition of furan to rhodium carbene, 6π -electron ring closure, and elimination—aromatization. Studies on the synthetic applications of this methodology and further exploration of the chemistry of 3-diazoindolin-2-imines are currently underway in our laboratory.

ASSOCIATED CONTENT

S Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.or-glett.5b01943.

Experimental procedures and characterization data for all new compounds (PDF)

Crystallographic information for compound **3d** (CIF) Crystallographic information for compound **6c** (CIF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: pinglu@zju.edu.cn.

*E-mail: orgwyg@zju.edu.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

The authors thank the National Natural Science Foundation of China (Nos. 21472164, 21472173, and J1210042) for financial support.

REFERENCES

(1) (a) Ishikura, M.; Abe, T.; Choshi, T.; Hibino, S. Nat. Prod. Rep.
 2010, 27, 1630. (b) Burgett, A. W. G.; Li, Q. Y.; Wei, W.; Harran, P. G.
 Angew. Chem., Int. Ed. 2003, 42, 4961. (c) Nicolaou, K. C.; Snyder, S.
 A. Classics in Total Synthesis II, 1st ed.; Wiley-VCH: Weinheim, 2003.
 (d) Crich, D.; Banerjee, A. Acc. Chem. Res. 2007, 40, 151.

(2) (a) Kochanowska-Karamyan, A. J.; Hamann, M. T. Chem. Rev.
2010, 110, 4489. (b) Sundberg, R. J. The Chemistry of Indoles;
Academic Press: New York, 1970. (c) Kochanowska-Karamyan, A. J.;
Hamann, M. T. Chem. Rev. 2010, 110, 4489. (d) Liang, J. L.; Park, S.
E.; Kwon, Y. J.; Jahng, Y. D. Bioorg. Med. Chem. 2012, 20, 4962.

(3) (a) Nie, G. M.; Han, X. J.; Hou, J.; Zhang, S. S. J. Electroanal. Chem. 2007, 604, 125. (b) Roy, J.; Jana, A. K.; Mal, D. Tetrahedron 2012, 68, 6099. (c) Geiger, T.; Benmansour, H.; Fan, B.; Hany, R.; Nuesch, F. Macromol. Rapid Commun. 2008, 29, 651.

(4) For selected reviews of synthesis and functionalization of indoles, see: (a) Shiri, M. Chem. Rev. 2012, 112, 3508. (b) Cacchi, S.; Fabrizi, G. Chem. Rev. 2011, 111, PR215. (c) Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875. (d) Bandini, M.; Eichholzer, A. Angew. Chem., Int. Ed. 2009, 48, 9608. (e) Dalpozzo, R. Chem. Soc. Rev. 2015, 44, 742.

(5) For leading reviews of α -imino metal carbenes, see: (a) Chattopadhyay, B.; Gevorgyan, V. Angew. Chem., Int. Ed. 2012, 51, 862. (b) Davies, H. M. L.; Alford, J. S. Chem. Soc. Rev. 2014, 43, 5151.

(6) (a) Horneff, T.; Chuprakov, S.; Chernyak, N.; Gevorgyan, V.; Fokin, V. V. J. Am. Chem. Soc. 2008, 130, 14972. (b) Zibinsky, M.; Fokin, V. V. Angew. Chem., Int. Ed. 2013, 52, 1507. (c) Grimster, N.; Zhang, L.; Fokin, V. V. J. Am. Chem. Soc. 2010, 132, 2510.

(7) (a) Chattopadhyay, B.; Gevorgyan, V. Org. Lett. 2011, 13, 3746.
(b) Shi, Y.; Gevorgyan, V. Org. Lett. 2013, 15, 5394. (c) Gulevich, A. V.; Gevorgyan, V. Angew. Chem., Int. Ed. 2013, 52, 1371.

(8) (a) Miura, T.; Funakoshi, Y.; Murakami, M. J. Am. Chem. Soc. 2014, 136, 2272. (b) Miura, T.; Tanaka, T.; Biyajima, T.; Yada, A.; Murakami, M. Angew. Chem., Int. Ed. 2013, 52, 3883. (c) Miura, T.; Yamauchi, M.; Murakami, M. Chem. Commun. 2009, 1470.

(9) (a) Parr, B. T.; Green, S. A.; Davies, H. M. L. J. Am. Chem. Soc.
2013, 135, 4716. (b) Spangler, J. E.; Davies, H. M. L. J. Am. Chem. Soc.
2013, 135, 6802. (c) Parr, B. T.; Davies, H. M. L. Angew. Chem., Int. Ed. 2013, 52, 10044.

(10) (a) Schultz, E. E.; Sarpong, R. J. Am. Chem. Soc. 2013, 135, 4696. (b) Schultz, E. E.; Lindsay, V. N. G.; Sarpong, R. Angew. Chem., Int. Ed. 2014, 53, 9904.

(11) (a) Yang, J. M.; Zhu, C. Z.; Tang, X. Y.; Shi, M. Angew. Chem., Int. Ed. 2014, 53, 5142. (b) Jiang, Y.; Tang, X. Y.; Shi, M. Chem. Commun. 2015, 51, 2122. (c) Tang, X. Y.; Zhang, Y. S.; He, L.; Wei, Y.; Shi, M. Chem. Commun. 2015, 51, 133.

(12) For selected examples, see: (a) Ran, R. Q.; Xiu, S. D.; Li, C. Y. Org. Lett. **2014**, 16, 6394. (b) Medina, F.; Besnard, C.; Lacour, J. Org. Lett. **2014**, 16, 3232. (c) Ma, X. J.; Pan, S. F.; Wang, H. X.; Chen, W. Z. Org. Lett. **2014**, 16, 4554. (d) Kim, C. E.; Park, S. J.; Eom, D.; Seo, B.; Lee, P. H. Org. Lett. **2014**, 16, 1900. (e) Jeon, H. J.; Jung, D. J.; Kim, J. H.; Kim, Y.; Bouffard, J.; Lee, S. G. J. Org. Chem. **2014**, 79, 9865. (f) Feng, J.; Wang, Y.; Li, Q.; Jiang, R.; Tang, Y. Tetrahedron Lett. **2014**, 55, 6455.

(13) (a) Sheng, G. R.; Huang, K.; Ma, S. C.; Qian, J.; Lu, P.; Wang, Y. G. *Chem. Commun.* **2015**, *51*, 11056. (b) Xing, Y. P.; Sheng, G. R.; Wang, J.; Lu, P.; Wang, Y. G. *Org. Lett.* **2014**, *16*, 1244. (c) Sheng, G. R; Huang, K.; Chi, Z. H.; Ding, H. L.; Xing, Y. P.; Lu, P.; Wang, Y. G. *Org. Lett.* **2014**, *16*, 5096.

(14) (a) Mahmoud, K. A.; Krug, M.; Wersig, T.; Slynko, I.; Schächtele, C.; Totzke, F.; Sippl, W.; Hilgeroth, A. *Bioorg. Med. Chem. Lett.* **2014**, *24*, 1948. (b) Wadsworth, A. D.; Naysmith, B. J.; Brimble, M. A. *Eur. J. Med. Chem.* **2015**, *97*, 816. (c) Yadav, A. K.; Verbeeck, S.; Hostyn, S.; Franck, P.; Sergeyev, S.; Maes, B. U. W. Org. Lett. **2013**, *15*, 1060.

(15) (a) Han, J.; Thirupathaiah, B.; Kwon, G.; Kim, C.; Seo, S. Y. *Dyes Pigm.* **2015**, *114*, 78. (b) Lee, C. W.; Im, Y.; Seo, J. A.; Lee, J. Y. *Org. Electron.* **2013**, *14*, 2687. (c) Na, Y. J.; Song, W.; Lee, J. Y.; Hwang, S. H. *Org. Electron.* **2015**, *22*, *92*.

(16) CCDC 1408514 (3d) and CCDC 1408515 (6c) contain supplementary crystallographic data for this paper.

4415